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1. Phys.: Condens. Matter 5 (1993) L355-W58. Printed in the UK 

LETTER TO THE EDITOR 

k - p theory of photonic band structures in periodic dielectrics 

N F Johnsont and P M Huit 
t kparrment of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK 

Deparunent of Physics, The Chinese University of Hong Kong. Shatin, New Tenitories. 
nong KO= 

Abstract. A k.p band-suucture formalism is presented lo describe photonic dispersion relations 
in periodic dielectric struchrres, within the scalar wave approximation. A reciprocal effective 
dielectric tensor is defined and an expression analogous to the f-sum rule for semiwnductors 
is derived. Application of the present formalism is discussed using a two-band model. ?Be 
generalization lo vector waves is outlined. 

Wave propagation in multi-component composites has generated much interest recently [I]. 
Particular attention has focussed on the propagation of electromagnetic (EM) waves in a 
periodic dielectric structure such as a regular m a y  of dielectric spheres embedded in a 
host medium with a different dielectric constant [2, 31. It has been observed experimentally 
that there exist ranges of frequencies in which propagation of EM waves is not allowed 141. 
These frequency ranges are termed 'photonic band gaps' in analogy with the electronic band 
gaps in solids. Many optical and microwave devices are now being designed based on the 
existence of such photonic band gaps [5].  

Photonic band structures have been calculated for different systems in 1, 2 and 3 
dimensions using various traditional electronic band structure techniques including a plane 
wave expansion and a Green function (KKR) method [6-131. However, these techniques 
are highly computationally intensive. The k . p theory [14-16] has been proven to be a 
simple and highly successful method for describing various electronic properties in ordered 
and disordered semiconductors, without the need for full-scale numerical calculations. The 
technique leads to the f-sum rule relating the effective mass of a band to the coupling 
between energy bands and the energy separation between bands. This method, although 
simple, has not been applied to describe photonic properties. This Letter provides a 
formal development of this technique to describe photonic dispersion relations in periodic 
dielectrics. In particular: (i) we present a k . p formulation for the photon band structure 
problem. (ii) An effective dielectric tensor is defined and an expression analogous to the 
f-sum rule is derived. (iii) Applications of the present formalism are discussed within a 
two-band model. In particular, application of the method to determine the imaginary band 
structure within the photonic gap is discussed. 

For simplicity, the present paper gives results for scalar waves. The generalization of 
the formalism to the vector EM problem is straightforward and will be discussed at the 
end. The extent to which the scalar theory represents a good approximation to vector EM 
theory has been discussed many times in the literature [17] and will not be dealt with here. 
We note that the scalar wave equation exactly describes the vector photon problem for a 
ldimensional periodic dielectric [18] and for the TM (transverse magnetic) mode in a 2- 
dimensional periodic dielectric [ 191. In addition, the present scalar formalism has a general 
application; it exactly describes any type of disturbance satisfying the scalar wave equation 
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in a medium with a periodic inhomogeneity in 1, 2 or 3 dimensions. An equally important 
application of the present scalar theory would therefore be to acoustic waves. 

Consider the problem of propagation of scalar waves in a periodic dielectric (or, for 
general scalar waves, composite) smcture. The scalar wave quation is [2&211 

where ( T ~ Q )  is the scalar field and ( ( T )  is a periodic function of T satisfying 

( ( r )  = E(T + R) (2) 

with R being any lattice vector of the periodic sbucture. Since E ( T )  is periodic, Bloch’s 
theorem holds [22]. The eigenstates of equation (1) are Bloch functions (rlnk) of the fonn: 

where n is a band index and k lies within the first Brillouin zone (Bz). The function U&, T )  

is periodic in T with the same periodicity as E(r), and 0 is the volume of the crystal. The 
corresponding eigenvalues of these Bloch functions are yielding the band structure or 
the dispersion relation. The Bloch functions (rink) form a complete set for all n and k. and 
they form the basis set for the crystal momentum representation (CMR). The completeness 
relation is given by [23] 

The orthogonality relation is given by [23] 

(n’k‘llnk) E (n‘k‘Ir)c(v-)(rlnk)dr = SmJkk, (5) s 
where the integral is over the whole volume a. Throughout this paper, the inner product 
(11) will denote integration with ( ( T )  acting as a weighting function, as shown explicitly in 
equation (5). 

The Kohn-Luttinger functions (rink) are defined as 122,241 

(6) 

where k~ is some fixed IC vector within the first BZ. The orthogonality relation, with c(r) 
as the weighting function, is 

1 
(rink) = - u n ( b ,  r1e’k.r = ei+h).r (r1n.W a 

(n‘k’llnk) = 6,,dkk,. (7) 

The Kohn-Luttinger functions form a complete set for all n and k. They form the basis set 
for the effective mass representation (Em). The completeness relation is given by 
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To set up a k . p  approach for the scalar wave band structure problem, we solve for the 
eigenstates in equation (1) by expanding the Bloch functions in terms of the Kohn-Luttinger 
functions, 

where the coefficient Anj(k) = (jkllnk) is the wavefunction in the Em. If we substitute 
equation (9) into the scalar wave equation (equation (1)) for the periodic dielectric structure, 
multiply by U;&, T) and integrate over a unit cell, we obtain the following equation for 
the coefficients: 

where 

(13) 

Note that p and q satisfy the properties p;j = pj, and 9;j = qjt. Writing s = k - b, we 
can express Pej ( I C )  as 

(14) 

Note that Pej(k) is the term analogous to the k - p  tern in the effective mass representation 
of the electronic problem for semiconductor band structures 181. The scalar qtj involves 
the integral of two U functions and is in general non-vanishing due to the presence of the 
factor e(?-) in the orthogonality relation (equation (5)).  Recall that our aim is to solve 
for the eigenvalue Wnk. There is one equation for each value of the band index e. For 
each t ,  equation (10) gives an equation for all the coefficients A.j, with j running over 
all the bands. Thus, the index n on Anj refers to the nth solution of the set of equations. 
Thus solving the band structure amounts to finding the eigenvalues of a manix H with 
elements Htj given by 

1 
qpJ = U, lc ut(ko, r)uj(IC:o, r)dT. 

PeJ (k) = s . ( p e j  - 2bqej) - S’qej. 

(15) Htj = 7 ~ j b S j p  ‘ 2  - f t j (k ) .  

We note that the formalism is exact up to this point. The method attracted particular 
attention in semiconductor physics because one can regard the momentum matrix element - 1u;VujdT as a parameter fitted to the best band structure calculation or to measured 
physical parameters. Thus, the band structure around some particular point in k-space for 
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some important group of bands (usually the lowest conduction and the highest valence 
bands in semiconductors) can be reproduced accurately. In the case of photonic band 
smctura, one could take the integrals p~ and qt, as parameters obtained by fitting to 
the many highly accurate band structures obtained so far using computationally intensive 
schemes, and thereby reproduce the band structure around some interesting region in the 
BZ accurately. Such a formalism should be useful in that it is computationally simple 
to obtain the dispersion relation about some particular point in k-space provided that the 
eigenfrequencies at that point are known. 

We are often interested in the dispersion relation around some point ko in the BZ In 
this case, k % ko and thus s = 131 is small. For example, the particular point of interest 
may correspond to the band extremum. Using ordinary second order perturbating theory, 
we obtain the dispersion relation of the nth band as 

Keeping terms only to second order of s and using equation (1 l), we have 

where 

%j = P"j - 2k04"j. (18) 

If ko is the point corresponding to a band extremum, then the term linear in s vanishes, 
i.e. 7rnn = 0, and the dispersion relation around ko is given by 

Motivated by the form of dispersion relation in a uniform dielectric medium CO' = 
czk2/c, we define a reciprocal effective dielectric tensor as 

where a, ,5 correspond to the Cartesian components relative to some chosen axis. Using 
equation (19), the effective dielectric tensor is given by 

If principal axes are chosen, the tensor is diagonal and its elements are given by 
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Equations (21) and (22) relate the effective dielectric constant of the nth band to the 
interaction between the nth band and the other bands. The coupling is characterized by 
rsj. The denominator is the separation in frequency at and thus corresponds to the 
gap frequency. These equations are thus analogous to the f -sum rule in dealing with the 
electronic properties of solids. 

To illustrate the usefulness of the IC. p formalism, we consider a two-band model in 
which only two bands are considered as relevant, the others being neglected or subsequently 
incorporated using perturbation theory. Let l(2) denote the lower (upper) band. The 
dispersion relation around IC0 in the E can be obtained by diagonalizing the following 
2 x 2 hamiltonian 

(23) 

corresponds to band extrema for both bands 1 and 2, then TI, = ? r ~ z  = 0 and H ( k )  

1. ( O z b / C 2  - 3. T 2 2  + S2q22 -s . Z 2 l  + s2q2, H ( k )  = 
-S. T I 2  + s2q12 6&/C' - 3. Til + S2qi l  

If 
becomes 

Note that xnj has a term related to KO and equation (24) corresponds to the general case of 
band extrema at some point IC0 within the Brillouin zone. If the band extrema correspond to 
the zone centre, then equation (24) can be further simplified. In general, the eigenfrequencies 
within a two-band model near the band extrema are obtained by solving the equation 

2 2 2  2 (ow, + c s qz - w2)(O:b + c2s2qll - 0 2 )  - c2(s. T2, - s2q21)(s. T I 2  - s q12) = 0. 
(25) 

Equation (25) can also be used to estimate the imaginary wavevector corresponding to 
frequencies within the gap. The magnitude of this imaginary wavevector is related to the 
wave attenuation at frequencies within the gap. This is an important piece of information 
for optoelectronic device design. 

The generalization of the present formalism to describe vector EM waves is 
straightforward since the vector wave equation is also a generalized Hermitian eigenvalue 
problem. The vector wave equation describing the electric field E is given by 

(26) 

and resembles the form of equation (1). The orthogonality relation for the electric field 
Bloch functions has the same form as that given above for the scalar field, except that it 
now involves the dot product of two vector fields together with the weighting function E(T). 
The general structure of the corresponding k . p equations and the f -sum rule is the same 
as for the scalar case considered here [25]. 

We are extremely grateful to Bob Meade for useful discussions on this work. Partial support 
was provided by a direct grant for research at the Chinese University of Hong Kong under 
grant number 220600190 and, during the initial stage, by COLCIENCIAS (Colombia). 
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